K*(892)⁰ Λ and K⁺ Σ *(1385)⁻ Photoproduction on the Deuteron

Paul Mattione, Carnegie Mellon University for the CLAS Collaboration supported by the DOE Office of Science

Outline

- Introduction to N*'s
- CLAS g13 experiment & analysis
- * Results
 - * $\gamma n \rightarrow p \pi^{-}$ differential cross section (not shown)
 - * Compared to published data: validated g13 data, analysis procedures
 - * $\gamma n \longrightarrow K^*(892)^0 \wedge \& \gamma n \longrightarrow K^+ \Sigma^*(1385)^-$ differential cross sections
 - * $\gamma n \rightarrow K^*(892)^0 \Lambda \& \gamma n \rightarrow K^+ \Sigma * (1385)^-$ potential interference
- Summary & conclusions

Introduction to N*'s

Searching for N* Resonances

- * "Missing" N* resonances ^[1]
 - * Wide, overlapping
 - * Correlated quark-pair?^[4]
- * N* decays: KY, K*Y, KY*
 - * Couplings sizable vs. N π ^[3]
 - Sparse γ n data vs. γ p
 Amplitudes (isospin)
- * No known γ n \rightarrow K*(892)⁰ A cross section measurements

Legend

Black: Established ^[3] Blue: Inconclusive ^[3] Red: Unobserved ^[3] Cyan: $\gamma N \longrightarrow K^*(892) \wedge$ ^[5]

NSTAR 2011

Paul Mattione, Carnegie Mellon University

Searching for N* Resonances

- * "Missing" N* resonances ^[1]
 - * Wide, overlapping
 - * Correlated quark-pair?^[4]
- * N* decays: KY, K*Y, KY*
 - * Couplings sizable vs. N π ^[3]
 - ***** Sparse γ n data vs. γ p
 - Amplitudes (isospin)
- ★ LEPS γ n → K⁺ Σ *(1385)⁻ data limited to low- θ^[6]

Legend Black: Established ^[3] Blue: Inconclusive ^[3] Red: Unobserved ^[3] Violet: γ N \rightarrow K Σ *(1385) ^[5]

NSTAR 2011

Paul Mattione, Carnegie Mellon University

CLAS g13 Experiment and Analysis

Paul Mattione, Carnegie Mellon University

6

JLab: CEBAF, CLAS, & g13

- ★ JLab CEBAF accelerator: up to 6 GeV e^{- [7]}
- CLAS detector (Hall B) ^[8]
 DC: Tracking, TOF: Timing
- * g13 experiment: 10/06 06/07, LD₂ target
 * Analysis: E_{e-} = 2.655 GeV, circularly polarized γ's
- * γ beam: radiator, γ tagger detects e^{-[9]}

Event Selection

- * $\gamma n \longrightarrow K^*(892)^0 \Lambda \& \gamma n \longrightarrow K^+ \Sigma * (1385)^-$
 - ★ $K^{*0} \longrightarrow K^{+} \pi^{-}, \Sigma^{*-} \longrightarrow \Lambda \pi^{-}$
 - * Λ , final state: (p), p, K⁺, π^- , π^-
 - * Similar, studied simultaneously
- Λ invariant mass
- Spectator proton missing mass

Paul Mattione, Carnegie Mellon University

Yield Extraction

- Reactions may interfere, cut majority of overlap
 ±1 Γ K*⁰, Σ*⁻ Cuts (70.5%)
- * Yield: K*(892)⁰, Σ*(1385)⁻ mass cuts
- (γ), (π⁰) backgrounds (K*⁰ Σ⁰)
 Scale $\delta\sigma$'s assigned

Results

10

$\gamma n \rightarrow K^*(892)^0 \Lambda$ Cross Section

Paul Mattione, Carnegie Mellon University

$\gamma n \rightarrow K^*(892)^0 \Lambda$ Cross Section

Paul Mattione, Carnegie Mellon University

$\gamma n \rightarrow K^*(892)^0 \Lambda \text{ Cross Section}^{13}$

Paul Mattione, Carnegie Mellon University

$\gamma n \rightarrow K^+ \Sigma * (1385)^- Cross Section^+$

- * Data: preliminary CLAS g13, LEPS
- * g13 total $\delta\sigma$'s: ~16% ~32%
- * (γ), (π^{0}) background scale $\delta\sigma$'s: ~4.0% ~6.8%

$\gamma n \rightarrow K^+ \Sigma * (1385)^- Cross Section^{15}$

- * Oh, et. al model ^[13]: effective Lagrangians, model $\delta\sigma$'s not quoted
 - * Partially constrained by $\gamma p \longrightarrow K^+ \Sigma^{*0}$ preliminary total cross section ^[11]
 - * Dominated by t-channel K⁺ and K⁺⁺, some N^{*'}s and Δ ^{*'}s included
 - * $N_{\frac{1}{2}}^{-}(1945), N_{\frac{3}{2}}^{3-}(1960), N_{\frac{3}{2}}^{3-}(2095), N_{\frac{5}{2}}^{5-}(2095), N_{\frac{5}{2}}^{5+}(1980)$

$\gamma n \rightarrow K^+ \Sigma * (1385)^- Cross Section¹⁶$

- ***** Low- θ : t-channel dominated
- ★ Matching: g13 & LEPS close, model ~57% < g13
- * Difference with model: not necessarily N*'s: t-channel?

$\gamma n \rightarrow K^*(892)^0 \Lambda vs. \gamma p \rightarrow K^+ \Lambda^+$

 $1.9 \leq E_{\gamma}$ (GeV) < 2.1

- ~Comparison vs. ground state [14] * (no $\gamma n \longrightarrow K^0 \Lambda$ yet)
 - Low- θ : K⁺ Λ ~56% > K^{*0} Λ
 - *
- Rescattering through π N: *
 - *
 - $K^* \Lambda$ sizable vs. $K \Lambda$ *
 - *

(qn)

 $\frac{d\sigma}{dcos(\theta_{Meson})}$

0.8

0.6

0.4

0.2

$\gamma n \rightarrow K^+ \Sigma * (1385)^- vs. \gamma n \rightarrow K^+ \Sigma^{\frac{18}{2}}$

- * Scale comparison vs. ground state ^[16]
- * $\gamma n \rightarrow K^+ \Sigma^-$ larger at low- θ in high-E_{γ} bins, similar elsewhere
- * KΣ*(1385): N* coupled-channels analyses

Paul Mattione, Carnegie Mellon University

$\gamma n \rightarrow K^{*0} \Lambda$: Σ^{*-} Overlap Cuts

$\gamma n \rightarrow K^+ \Sigma^* : K^{*0} \text{ Overlap Cuts}^2$

NSTAR 2011

Paul Mattione, Carnegie Mellon University

Summary & Conclusions

Paul Mattione, Carnegie Mellon University

Summary & Conclusions

- * N* spectrum: strong force and hadronic structure
 - Role of quark correlations: limit N* spectrum
 - * Search in KY, K*Y, and KY* channels
- * Preliminary $\gamma n \rightarrow K^*(892)^0 \Lambda \& \gamma n \rightarrow K^+ \Sigma * (1385)^-$ cross sections
 - * With theorist: N* couplings, greater understanding of interactions
 - * Sizable vs. KY: include in coupled-channels analyses (rescattering)
 - * Potential interference effects less than $\delta\sigma$'s
 - * Can improve further: additional studies can reduce $\delta\sigma$'s to ~10 ~20%
- * These results will be published when the systematic uncertainties are reduced, and will contribute to the search for the N* resonances.

References

- [1] S. Capstick and N. Isgur, Phys. Rev. D **34**, 2809 (1986).
- [2] W. Roberts, <u>http://www.physics.fsu.edu/users/roberts/roberts_hadrons.html</u>
- [3] K. Nakamura et al. (The Particle Data Group), J. Phys. G 37, 075021 (2010).
- [4] E. Santopinto, Phys. Rev. C 72, 022201(R) (2005).
- [5] S. Capstick and W. Roberts, Phys. Rev. D 58, 074011 (1998).
- [6] K. Hicks et al. (The LEPS Collaboration), arXiv:0812.0771 [nucl-ex] (2008).
- [7] C. W. Leemann, D.R. Douglas, G.A. Krafft, Annu. Rev. Nucl. Part. Sci. 51, 413 (2001).
- [8] B. A. Mecking *et al.* (The CLAS Collaboration), Nucl. Instr. and Meth. A 503, 513 (2003).
- [9] D. I. Sober *et al.* (The CLAS Collaboration), Nucl. Instr. and Meth. A **440**, 263 (2000). [10] Y. Oh, H. Kim, Phys. Rev. C **73**, 065202 (2006).
- [11] L. Guo and D. P. Weygand (The CLAS Collaboration), arXiv:0601010 [hep-ex] (2006).
- [12] L. Guo, Florida International University, Private Communication (2011).
- [13] Y. Oh, C. M. Ko, K. Nakayama, Phys. Rev. C 77, 045204 (2008).
- [14] M. E. McCracken et al. (The CLAS Collaboration), Phys. Rev. C 81, 025201 (2010).
- [15] W-T. Chiang, F. Tabakin, T.-S. H. Lee, and B. Saghai, Phys. Lett. B 517, 101 (2001).
- [16] S. Anefalos Pereira et al. (The CLAS Collaboration), Phys. Lett. B 688, 289 (2010).

N*'s: Experimental Searches

PDG State	L_{2I-2J}	Overall Status	Status in Channel						
(MeV/c^2)			$N\pi$	$N\eta$	ΛK	ΣK	$\Delta \pi$	N ho	$N\gamma$
N(1440)	P_{11}	****	****	*			***	*	***
N(1520)	D_{13}	****	****	***			****	****	****
N(1535)	S_{11}	****	****	****			*	**	***
N(1650)	S_{11}	****	****	*	***	**	***	**	***
N(1675)	D_{15}	****	****	*	*		****	*	****
N(1680)	F_{15}	****	****	*			****	****	****
N(1700)	D_{13}	***	***	*	**	*	**	*	**
N(1710)	P_{11}	***	***	**	**	*	**	*	***
N(1720)	P_{13}	****	****	*	**	*	*	**	**
N(1900)	P_{13}	**	**					*	
N(1990)	F_{17}	**	**	*	*	*			*
N(2000)	F_{15}	**	**	*	*	*	*	**	
N(2080)	D_{13}	**	**	*	*				*
N(2090)	S_{11}	*	*						
N(2100)	P_{11}	*	*	*					
N(2190)	G_{17}	****	****	*	*	*		*	*
N(2200)	D_{15}	**	**	*	*				
N(2220)	H_{19}	****	****	*					
N(2250)	G_{19}	****	****	*					
N(2600)	$I_{1 \ 11}$	***	***						
N(2700)	K_{113}	**	**						

NSTAR 2011

N* Spectrum – Diquark Model^{**}

- ★ Alternative: diquark model ^[7]
 - * Correlated quark-pair
 - Less DOF: less N* states
 - * Predictions up to $2 \text{ GeV}/c^2$
 - No missing resonances
- Measure N* spectrum
 Role of quark correlations

Black: Established Blue: Inconclusive Red: Unobserved Green: Diquark Model

NSTAR 2011

Paul Mattione, Carnegie Mellon University

CLAS $\gamma N \rightarrow N^* \rightarrow KY Program^{26}$

- ***** Large $\gamma N \rightarrow KY$ program: σ , polarization observables
 - Polarization observables: spin-dependent constraints for N* extraction
- * My analyses: $\gamma n \rightarrow K^*(892)^0 \Lambda$ and $\gamma n \rightarrow K^+ \Sigma^*(1385)^-$
 - g13 experiment, measure cross sections
- * Also LEPS, GRAAL, SAPHIR, CBELSA/TAPS, & MAMI

			Reaction	Experiment	Published	Analyses in Progress
			$\gamma p \to K^+ \Lambda$	g1c, g8b, g11, g13, g9	σ, P, C_x, C_z	$\Sigma, T, O_x, O_z, E, G$
			$\gamma n o K^0 \Lambda$	g13		Σ
			$\gamma p \to K^+ \Sigma^0$	g1c, g8b, g11, g13	σ, P, C_x, C_z	Σ, T, O_x, O_z
CLAS Experiment	Beam	Target	$\gamma p \to K^0 \Sigma^+$	g8b, g11		σ, Σ, P
g1	γ, γ_{c}	LH_2	$\gamma n \to K^+ \Sigma^-$	g10, g13	σ	\sum
g8	$\gamma_{\scriptscriptstyle L}$	LH_2	$\gamma n ightarrow K^0 \Sigma^0$	g13		\sum
g9	$\overrightarrow{\gamma_{C}}, \overrightarrow{\gamma_{L}}$	C_4H_9OH	$\gamma p \rightarrow K^*(892)^0 \Sigma^+$	g1c	σ	
g10, eg3	γ	LD_2	$\gamma n \to K^*(892)^0 \Lambda$	g13		σ
g11	γ	LH_2	$\gamma p \to K^*(892)^+ \Lambda$	g11		σ, P
g13	γ_{c}, γ_{L}	LD_2	$\gamma p \to K^+ \Sigma (1385)^0$	g11		σ
g14 (2011-2012)	$\overrightarrow{\gamma_{C}}, \overrightarrow{\gamma_{L}}$	H D	$\gamma n \to K^+ \Sigma (1385)^-$	eg3, g13		σ
			$\gamma p \to K^+ \Lambda(1520)$	eg3		σ
			$\gamma n \to K^0 \Lambda(1520)$	eg3		σ

NSTAR 2011

Paul Mattione, Carnegie Mellon University

Signal Overlap in E_{γ} Bins

* Overlap cuts contain 70.5% of Breit-Wigner mass peak

K*(892)⁰ vs. Σ*(1385)⁻ Invariant Mass

Paul Mattione, Carnegie Mellon University

27

$\gamma n \rightarrow p \pi^{-} Cross Section$

- Test reaction: check g13 data & analysis procedures
 - * Compared to CLAS g10 (systematic $\delta\sigma$'s unavailable)^[8]
 - * Preliminary: partial systematic $\delta\sigma$'s, g10
 - ***** Good matching: g13 ~6.5% > g10, partial systematic: ~10.8%

$\gamma n \rightarrow p \pi^{-} Cross Section$

- Will publish when finalized (significant increase to world statistics)
 ~2% of g13a shown, will have smaller energy bins (E_γ: 0.4 2.5 GeV)
- Data will improve:
 - * N* couplings to neutron in π N
 - * Understanding of rescattering & γ n ^[9]: GWU phenomenologist

$\gamma n \rightarrow K^*(892)^0 \Lambda$ Binning

Paul Mattione, Carnegie Mellon University

30

$\gamma n \rightarrow K^+ \Sigma * (1385)^- Binning$

Paul Mattione, Carnegie Mellon University

31

$\gamma n \rightarrow K^*(892)^0 \Lambda$ Yields

$\gamma n \rightarrow K^+ \Sigma * (1385)^-$ Yields

$(\gamma), (\pi^0)$ Backgrounds

- * $(\gamma), (\pi^0)$ backgrounds
 - * E.g.: $\gamma n \longrightarrow K^{*0} \Sigma^0, \Sigma^0 \longrightarrow \Lambda \gamma$
 - * Studied K^{*0} & Σ^{*-} in (p) sideband
- ***** Low statistics: no θ -dependence
 - * Assigned as scale $\delta\sigma$'s
 - ***** K*(892)⁰: 5.4% 18.0%
 - ***** Σ *(1385)⁻: 4.0% 6.8%

Systematic Uncertainty Studies

- * All analysis steps:
 - * Vary cuts, procedures
 - * Cross section change: $\delta\sigma$'s
- ***** Joint analyses: shared $\delta\sigma$'s
- Dominant sources:
 - Simulation distributions
 - ***** K^{*0} & Σ^{*-} fits
 - * $(\gamma), (\pi^0)$ backgrounds

Future studies

- ***** Backgrounds, acceptance
- * Studies in development
- * Reduce $\delta \sigma$'s to 10% 20%

Category	Source	Study	$\sim \sigma$ Range	
CLAS Acceptance	π^- Momentum Cut	100 vs. 150 (MeV/c)	3.2% - 5.4%	
	$p\ \&\ K^+$ Momentum Cuts	400 vs. 450 (MeV/c)	0.33% - 0.53%	
	Fiducial Cuts	0.02 rad Tighter	1.7% - 6.2%	
	Trigger Simulation	K^+ , No Simulation	2.3% - 3.4%	
	Particle Identification Cuts ±	$\pm 3\sigma$ vs. $\pm 2\sigma$	3.6% - 7.4%	
Final-State Identification	Time Difference Cuts	$\pm 3\sigma$ vs. $\pm 2\sigma$	5.0% - 9.3%	
	Λ Invariant Mass Cuts	$\pm 3\sigma$ vs. $\pm 2\sigma$	4.4% - 6.6%	
	Missing Momentum Cut	200 vs. $150~({\rm MeV/c})$	2.0% - 3.6%	
	p Missing Mass Cuts	$\pm 3\sigma$ vs. $\pm 2\sigma$	2.7% - 6.5%	
	Simulation Distribution	t-slope vs. Model	θ: 0.19% - 23.1%	
	K^{*0} Overlap Cuts	$\pm 1\Gamma$ vs. $\pm 2\Gamma$	3.8% - 5.6%	
Specific to	Σ^{*-} Background Fits	Function Type	3.3% - 15.4%	
$\gamma n \to K^+ \Sigma^{*-}$	Σ^{*-} Invariant Mass Cuts	$\pm 2\Gamma$ vs. $\pm 1\Gamma$	1.4% - $2.8%$	
	γ, π^0 Background	Sideband Yield	4.0% - 6.8%	
	Overall Systematics	400 vs. 450 (MeV/c) 0.02 rad Tighter K^+ , No Simulation $\pm 3\sigma$ vs. $\pm 2\sigma$ $\pm 3\sigma$ vs. $\pm 2\sigma$ $\pm 3\sigma$ vs. $\pm 2\sigma$ 200 vs. 150 (MeV/c) $\pm 3\sigma$ vs. $\pm 2\sigma$ t -slope vs. Model $\pm 1\Gamma$ vs. $\pm 2\Gamma$ Function Type $\pm 2\Gamma$ vs. $\pm 1\Gamma$ Sideband Yield NA Model vs. t-slope $\pm 1\Gamma$ vs. $\pm 1.5\Gamma$ Function Type $\pm 2\Gamma$ vs. $\pm 1.15\Gamma$ Sideband Yield NA Model vs. t-slope $\pm 1\Gamma$ vs. $\pm 1.5\Gamma$ Function Type $\pm 2\Gamma$ vs. $\pm 1.5\Gamma$ Function Type $\pm 2\Gamma$ vs. $\pm 1.5\Gamma$	θ: 16.3% - 31.3%	
	Simulation Distribution	Model vs. t -slope	θ: 0.036% - 32.2%	
Specific to $\gamma n \to K^{*0} \Lambda$	Σ^{*-} Overlap Cuts	$\pm 1\Gamma$ vs. $\pm 1.5\Gamma$	$\theta: 0.067\% - 20.3\%$	
	K^{*0} Background Fits	Function Type	θ: 0.19% - 31.6%	
	K^{*0} Invariant Mass Cuts	$\pm 2\Gamma$ vs. $\pm 1\Gamma$	θ : 1.5% - 16.5%	
	γ, π^0 Background	Sideband Yield	5.4% - 18.0%	
	Overall Systematics	NA	θ: 16.6% - 45.4%	

NSTAR 2011

Paul Mattione, Carnegie Mellon University